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Abstract

Diffusion models now dominate 3D mesh synthesis from images because they can flexibly sample
from complex, high-dimensional shape distributions. However, even the best performing 3D
diffusion models still suffer from artifacts, poor fidelity, and perspective inconsistencies. Moti-
vated by the substantial improvements observed in LLMs when allocating additional compute
at inference-time, we apply inference-time-scaling algorithms tailored to 3D diffusion models to
improve the quality of 3D generations. We propose a dynamic Best-of-N scaling algorithm for
selecting candidate multiview generations, and employ a multimodal LLM grader as a general,
customizable verifier. We conduct an experiment on a subset of the Objaverse mesh dataset and
show that our scaling algorithm increases aesthetic quality and fidelity to ground truth meshes
while offering interpretable justifications during verification.

1 Introduction

One key advantage of diffusion models is that in-
creasing the number of denoising steps often improves
sample quality [6]. But beyond a certain point, ad-
ditional steps yield diminishing—and sometimes neg-
ative—returns [6], an observation we corroborate in
the realm of 3D diffusion models . Existing
algorithms for scaling diffusion models at inference-
time have yet to be tested on 3D diffusion models,
and require domain-adaption to perform optimally
on this new class of model. This invites new meth-
ods for scaling 3D diffusion models. In this work, we
propose an inference-time scaling approach for 3D
diffusion models that combines (1) an adaptive Best-
of-N sampling strategy and (2) a multimodal LLM
grader that selects optimal multiview generations to
improve downstream 3D reconstruction.

1.1 Inference-Time Scaling

Inference-time scaling strategies are algorithms that
can be applied at inference-time to bolster model
performance without updating model parameters,
which requires costly retraining. Inspired by the rapid
improvements to LLMs via inference-time scaling
algorithms, we observe that analogous methods can
be applied to 3D diffusion models, taking advantage
of the inherent randomness present in transporting
noisy samples to clean, novel generations. Unlike
LLMs, diffusion models first sample gaussian noise,
and repeatedly take steps to stochastically denoise
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Figure 1: We generate 50 multi-view outputs from the
diffusion pipeline of InstantMesh at various denoising
steps, and extract LLM grader scores from the mul-
timodal model Gemini. We observe plateauing and
even degenerating multi-view quality, inviting better
inference-time scaling algorithms

the sample towards the target data distribution. As
shown by Magq et al. [6]., image diffusion models follow
impressive scaling laws when sampling N additional
starting noises and selecting the best candidate
according to a werifier, a scaling strategy coined
Best-of-N. This algorithm has led to substantial
improvements in aesthetic quality, prompt adherence,
and overall coherence of 2D generations - motivating
us to reformulate this approach to be compatible
with 3D diffusion models. We propose a variable
N that adaptively adjusts the number of starting
seeds searched over at inference-time, reducing
time and compute for easy generation tasks and



reallocating them towards difficult generations. We
furthermore employ a multimodal LLM grader that
has the capacity for assessing multi-view candidates
on arbitrary prompting and reweighting.  Our
contribution consists of

1. Adaptive Best-of-N sampling strategy that
resamples starting initial Gaussian noises from a
generative model up to N times based on feed-
back from the LLM verifier, reallocating compute
from "easy" to "difficult" reconstructions.

2. Multi-modal LLM grader prompted to eval-
uate the output of the diffusion pipeline with a
score of 1-10. The LLM can receive arbitrary
prompting for evaluating candidate multi-view
generations, and outputs interpretable natural
language justifications alongside scores.

1.2 Motivation

Diffusion models are a class of generative models
trained to learn a backwards denoising process. At
generation time, they start from pure random noise
and iteratively apply these learned denoising steps to
sculpt novel samples. They have quickly dominated
image, video, audio, and more recently 3D reconstruc-
tion domains, due to their capacity for sampling from
high dimensional complex data distributions, which
are common in these visual domains. 3D diffusion
models in particular have revolutionized fields like
interior design and manufacturing, where obtaining
high fidelity and aesthetic 3D models from a single in-
put image can greatly reduce labor costs and expedite
commercial processes. However, perspective inconsis-
tencies, artifacts, and poor fidelity still plague these
generated models and necessitate costly human verifi-
cation, inviting research into scaling the robustness
and quality of 3D diffusion models.

1.3 Related Works
1.3.1 Diffusion Models for 3D Generation

Diffusion models rapidly accelerated the field of 3D
object generation by allowing reconstruction models
to condition on 2D, multiview priors. DreamFusion
[7] was one of the first models to utilize a two-step
pipeline for 3D object synthesis, first passing a single
image into a multi-view diffusion model that outputs
novel perspectives of the object in the original image.
Then, a neural radiance reconstructs the 3D object
using the multiview generations as guidance. This
diffusion-reconstruction pipeline has largely become

the state of the art for 3D object generation, with mod-
els like Zero-123 achieving improvements by further
conditioning on changes in multiview images. Despite
these advancements, there is still a large potential for
additional improvements by scaling at inference time.

1.3.2 Inference Time Scaling for Diffusion
Models

A natural lever for improving diffusion outputs is to in-
crease the number of denoising steps, yet several stud-
ies report diminishing or even negative returns beyond
a dataset-specific horizon. Complementary to altering
denoising steps, a line of work explores search-based
scaling strategies at inference time. Best-of-IN sam-
pling (randomly drawing N noise seeds and selecting
the highest-reward sample) consistently improves FID
and aesthetic metrics for text-to-image diffusion trans-
formers.

1.3.3 LLM Graders

Human evaluation of 3-D outputs is costly; recent
work therefore leverages LLMs as reference-free judges.
Vision-language models like GPT-4V have achieved
medical image assessments on par with human ex-
perts [4], demonstrating their ability to interpret
high-resolution spatial features , highlighting their
capacity to reason over high-resolution spatial detail.
However, prior graders operate on 2-D projections; our
multimodal rubric explicitly incorporates multi-view
coherence and mesh fidelity, bridging the gap between
2-D image assessment and full 3-D reconstruction
quality.

1.4 Summary

Taken together, existing literature shows that (i) sam-
pling diversity via noise-seed search, (ii) LLM-based
evaluators each improve generative fidelity in isolation,
and we furthermore observe that adaptive compute
allocation can be helpful in 3D domains when the
difficulty of reconstruction tasks vary greatly. Our
contribution unifies these strands by integrating an
adaptive Best-of-N search with a multimodal LLM
grader, yielding significant improvements on samples
from the Objaverse dataset without retraining the
diffusion backbone.

2 Method

We will focus our analysis on 3D diffusion models that
employ a two stage, diffusion-reconstruction pipeline,
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Figure 2: Top: Our modified InstantMesh pipeline, which uses a multimodal LLM grader (Google Gemini)
to screen multiview outputs against a score threshold before 3D reconstruction. Bottom: The standard

InstantMesh model without inference-time scaling.

as modeled in Our inference-time scaling
algorithm will aim to scale the quality of the multi-
view outputs from the diffusion stage with the aim of
improving downstream 3D generation fidelity and aes-
thetic quality. Our framework can be understood as
having two scaling axes: the search algorithm (Adapa-
tive Best-of-N and verifier (LLM Grader). We discuss
these components below.

2.1 Adaptive Best-of-N

Under the observation that some starting noises lead
to higher quality generations, Best-of-N has been
shown to be a simple, effective scaling algorithm for
image diffusion models. We furthermore observe that
there is a more concrete notion of the ground truth
in 3D reconstruction that is partially revealed by the
input image, which in turn greatly varies the difficulty
of the reconstruction task. We therefore adaptively
change the number of regenerations based on a score
threshold. N is now an upper bound on the number of
generations, with the score threshold being in place to
shortcircuit the algorithm if feedback from the LLM
suggest that the multiview generations already com-
pose a promising input to the 3D reconstruction model.
Our algorithm is concretely outlined in Appendix [B}

2.2 LLM Grader

The adaptive Best-of-N algorithm’s efficacy largely re-
lies on the validity of the verification step. Rather than
relying on pretrained task-specific networks to act as
verifiers—which might generalize poorly between dif-
fusion models, input images, and ground truth objects
while exhibiting limited customization—we rely on a
more general joint text-image model in the form of a
multimodal LLM. Using an LLM grader as a verifier
allows for customizable prompting and scoring, a wide
range of content in the input images, and interpretable
explanations for scores.

Formally, we give the LLM grader a JSON of the
input image, the group of multi-view generations, and
a prompt outlining what metrics to assess the multi-
view generation on, requiring grading on a scale of
1 to 10. In our experiment, we prompted the LLM
to assess on the basis of (1) Consistency with Input
Image, (2) Aesthetic Quality, (3) Visual Consistency
across Views. Additionally, each of these sub scores
can be weighted with low, medium, high importance.
The final outputscore is a weighted average of the
subscores as a proxy for 3D reconstruction potential.
Our exact prompt can be found in Appendix A.

2.3 Experiment

We conduct the following experiment using the 3D
diffusion model InstantMesh for its fast, low memory
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Figure 3: Outline of our expreimental process. For each of the 145 sampled meshed, we input a 2D view to
the base and inference time-scaled model which genereated meshes. We then align the meshes using ICP and
take 32 views of each generated mesh to compare consistent views of generated meshes against ground truth

viewss.

overhead 2 step diffusion pipeline. We first extract
input views from ground truth meshes taken from
a subset of the Objaverse mesh database to create
a dataset of 145 (input image, ground truth mesh)
pairs. We generate meshes both with and without
adaptive Best-of-N (with a threshold value of 8), and
assess their fidelity to the ground truth. For 3D
geometric evaluation, we use the Chamfer Distance
(CD) to measure the 3D structural similarity between
the generated mesh and ground truth [3]. For 2D
perceptual evaluation, we render 32 novel views of
both the generated and ground truth mesh and report
the LPIPS, PSNR, SSIN, and FS scores. Importantly,
we write our own 3D alignment and 2D view extraction
algorithms and evaluate on a different dataset, so our
reported metrics are not comparable with what was
reported in Xu et al. [g].

3 Results

Quantitative Results. To compare generated
meshes against the ground truth, we first normalize all
meshes to fit within a [—1, 1]* cube and align them us-
ing an Iterative Closest Point (ICP) algorithm [2] (see
Appendix for implementation details). For each
object in our dataset, we generate 32 consistently sam-
pled camera views, evenly distributed on a spherical
surface around the aligned mesh. We take 2D images
of the same views of the ground truth, the base model
output, and our inference-time-scaled model output.

We then compare generated views with ground truth
for each 2D metric (PSNR, SSIM, LPIPS, FS) by first
averaging across the 32 values of each metric for each
generated mesh, and then reporting the average over
all 145 objects in the dataset. We achieve significant
improvement across all 2D metrics, with values shown
in Table 1. We observe a 1.647 increase in PSNR
which measures the pixel-wise fidelity between two
images. A higher PSNR indicates our novel views are
closer to the ground truth image in terms of pixel-wise
accuracy when compared with the base model. Higher
PSNR does not always mean better perceptual qual-
ity to the human eye. For instance, PSNR is blind
to perceptual details like edges or local contrast and
two images can have high PSNR but differ in texture
or structure. LPIPS, which our model saw a 0.0855
decrease in (where lower is better), addresses these,
and quantifies how visually similar two images are
based on the activations of a pre-trained deep neural
network (in our case AlexNet [5]). Substantially out-
performing the base model on these two 2D metrics
suggests our infrerence time-scaled model is produc-
ing images that are both more numerically accurate
and perceptually faithful to the ground truth than
the base model, and is a strong indication that our
model improves fidelity and perceptual quality. This
claim is further reinforced by the marked improve-
ment in SSIM and FS, which respectively capture
structural similarity and distributional realism, offer-
ing additional evidence that our generated views are
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Figure 4: Left: Input images. Middle: Base InstantMesh reconstructions. Right: Inference-time-scaled
reconstructions. Our inference-time-scaled model consistently reduces artifacts and improves both geometric
fidelity and texture quality across diverse objects. In contrast to the blocky distortions and collapsed details
seen in the base InstantMesh outputs, the scaled model produces cleaner multiviews that better preserve thin
structures, fine curves, and surface shading (see lamp and wall sconce examples in the figure).

not only pixel-aligned but also semantically consistent
and visually coherent.

To assess significance, we assumed independence
between our 145 randomly sampled meshes from the
Objaverse-XL dataset due to Objaverse-XL large size
and object diversity (Objaverse-XL contains over one
million objects) [I]. We first assessed normality of the
paired differences using the Shapiro-Wilk test, and
then applied paired ¢-tests (or a Wilcoxon signed-rank
test when appropriate) for our 2D metrics (see Ap-
pendix @ In every case, p < 0.001, demonstrating
that our inference-time scaling yields consistent and
highly significant improvements across all four met-
rics.

We also evaluated geometric fidelity via the Cham-
fer Distance (CD) between predicted and ground-truth
point clouds. The paired differences failed the
Shapiro-Wilk normality test (W = 0.931, p < 0.001),
so we report both parametric and nonparametric re-
sults. The mean CD improvement was 0.0262 (Gemini
— baseline), but this did not reach significance: the
paired t-test yielded t = —0.508, p = 0.613, and the
Wilcoxon signed-rank test gave W = 8068, p = 0.812.

Thus, although the average Chamfer Distance was
slightly lower with our model, the difference is not
statistically significant.

Table 1: Quantitative Results on 145 Objaverse-XL
Objects

o N/
% ¥ =
~ / —
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Method PSNRt  SSIMT  LPIPS|) CDJ FSt
IM (base)  10.882 0.7148 0.4094  0.2342 0.8587
IM (ours) 12.529 0.7431 0.3239 0.2080 0.8774

Qualitative Results. Figure [f] compares recon-
structions from the base InstantMesh model (middle
column) and our inference-time-scaled model (right
column), alongside the original input images (left col-
umn). Across all four examples, our scaled model
consistently reduces obvious artifacts and more faith-
fully reproduces both geometry and texture. Overall,
these examples illustrate that adaptive Best-of-N sam-
pling with an LLM grader not only improves quanti-
tative metrics but also yields visually cleaner, more
artifact-free multiview sets—critical for high-quality



3D reconstruction.

4 Conclusion

In this work, we introduced a model-agnostic, cus-
tomizable inference-time scaling algorithm for 3D
diffusion models that combines adaptive Best-of-IV
sampling with a multimodal LLM grader. By dy-
namically allocating compute based on generation
difficulty and leveraging a reference-free evaluator to
select high-quality multiview outputs, our method
significantly improved 2D perceptual metrics (PSNR,
SSIM, LPIPS, FS) and yielded a modest average re-
duction in Chamfer Distance, though the latter did
not reach statistical significance on our 145-sample set.
Notably, in several cases the gains achieved through
scaling rivaled those reported from fundamental archi-
tectural advancements in 3D diffusion models, high-
lighting inference-time scaling as an untapped avenue
for enhancing generation quality. Crucially, these im-
provements were obtained without any retraining of
the diffusion backbone, underscoring the practicality
and compute-efficiency of our approach.

5 Discussion

While our results demonstrate clear benefits of
inference-time scaling in visual fidelity and perceptual
quality, several limitations merit consideration:

e Dataset size: Our evaluation was limited to 145
Objaverse-XL meshes due to compute constraints
(Thours of A100 time), which may underpower de-
tection of small geometric gains such as Chamfer
Distance improvements.

e Chamfer Distance significance: Although
the mean CD decreased by 0.0262, paired tests
did not reach significance, suggesting that larger
or more diverse samples are needed to validate
geometric improvements.

e Black-box verifier: The multimodal LLM
grader operates as an external API (e.g., Gemini)
with opaque internal weighting, which may limit
reproducibility and introduce domain biases.

Future Work. To place our findings in context of
prior 3D diffusion research, we will:

e Conduct evaluations over a larger, unified In-
stantMesh dataset, enabling direct comparison
with existing architectural benchmarks.

e Explore distillation of LLM feedback into
lightweight internal verifiers to reduce external
API dependence.

e Investigate more fine-grained adaptive schedules
for compute allocation across varied object cate-
gories and reconstruction difficulties.

Overall, our project reveals that inference-time scal-
ing algorithms—Ilong exploited in LLMs—represent
a promising, underexplored direction for advancing
3D generative modeling without incurring the cost of
backbone retraining.
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A LLM Grader Prompt

You are an expert 3D artist and image quality evaluator.
You will be provided with data in the following sequence:
1. This instructional prompt.

2. A section starting with "--- Initial Input Image ---" followed by a single base image.
This is the original image used to generate 3D views.
3. A section starting with "--- Candidate Multiview Set ---" followed by a set of 6

multiview images. These are candidate views for reconstructing a 3D model.

Your task is to evaluate the "Candidate Multiview Set" based on its quality and suitability for
3D reconstruction, WITH CRITICAL CONSIDERATION of its consistency with the "Initial Input Image".

Evaluation Criteria for the "Candidate Multiview Set":

1. #**Consistency with Initial Input Image (Weight: High)**:
* Object Identity: Do the multiviews clearly depict the same object/subject as shown in
the initial input image?
*  Key Features: Are important details, shapes, and characteristics from the input image
accurately represented in the multiviews?
*  Style and Appearance: Is the artistic style, texture, and overall appearance consistent
between the input image and the multiview set?

2. xxAesthetic Quality (Weight: Medium)x**:
*  Visual Appeal: Are the multiview images individually and collectively visually appealing?
*  Clarity & Detail: Are the images sharp, well-defined, and free of excessive noise or
artifacts?

3. *x*Visual Consistency Across Views (Weight: Medium)*x*:
*  Coherence: Do the 6 views look like they belong to the same 3D object viewed from
different
angles?
* Lighting & Shading: Is lighting and shading consistent across all views?
*  Texture/Color Continuity: Do textures and colors flow smoothly and realistically from
one view
to another?

4. *x3D Reconstruction Potential (Weight: High)**:
*  Completeness: Do the views provide sufficient information to reconstruct a coherent
3D shape?
*  View Diversity: Are the views diverse enough to capture different aspects of the object?
*  Ambiguity: Are there minimal ambiguities or contradictions that would hinder 3D
reconstruction?

Output Format:
Provide your evaluation as a single, valid JSON object. The JSON object should have the
following structure:

{

"consistency_with_input_image": {
"score": <number from O to 10, where 10 is perfect consistency>,
"explanation": "<brief explanation for the score, max 2 sentences>"

3,

"aesthetic_quality": {
"score": <number from O to 10, where 10 is excellent>,
"explanation": "<brief explanation, max 2 sentences>"

s

"visual_consistency_across_views": {



"score": <number from O to 10, where 10 is perfect consistency>,
"explanation": "<brief explanation, max 2 sentences>"
},
"reconstruction_potential": {
"score": <number from O to 10, where 10 is excellent potential>,
"explanation": "<brief explanation, max 2 sentences>"
3,
"overall_score": <number from O to 10, this should be a weighted average or holistic
assessment
based on the above criteria, with higher weight on ’Consistency with Initial Input Image’
and ’3D
Reconstruction Potential’>,
"overall_assessment": "<a concise summary (2-3 sentences) of why this candidate set
is good or
bad, highlighting its consistency with the input image and overall 3D suitability>"

Important:

Scores must be numbers (e.g., 7), not strings (e.g., "7/10").
Ensure the entire response is ONLY the JSON object. Do not include any text before or

after the JSON.

B Adapative Best-of-N

Algorithm 1 Adaptive Best-of-N Sampling

Require: input image I, model M,N, score threshold 7

1
2

3:

9:

10
11

e B

:n<+ 0, best_score < —o0

: while n < N and best _score < T do
sample noise seed s,
generate multi-view set V,, + M(I, s,)
(scorey, reasony,,) < LLM _GRADE(I, V,,)
if score, > best_score then

best _wviews < V,,; best_score < scorey,

end if
n<n+1

: end while

: return bestviews

C Implementation Details

e Diffusion backbone: denoising steps = 30, guidance scale = 7.5.

LLM grader: Multimodal Gemini API (v2025-04).

e Camera sampling: 32 views via Fibonacci sphere.

ICP alignment parameters:



Parameter Value
n_iter 100
count_source 10,000
count_ target 20,000
initial transforms None
fixed scale true
outliers 0.0

on_ surface false
min_scale 0.5
max_scale 2.0
coarse _iter 150
fine iter 100
outliers 0.1
plot false
test reflections true

Table 2: Open3D ICP align

Statistical Tests for 2D Metrics

ment settings.

Metric Shapiro—Wilk Significance Test
w D Test Statistic (p)
PSNR 0.984 0.1041 Paired ¢ t =5.715 (6.35e8)
SSIM 0.972  0.0060 Paired ¢ t = 4.289 (3.33€5)
Wilcoxon W = 2840 (8.32e6)
LPIPS 0.985 0.1346 Paired ¢ t = —8.062 (3.00e13)
FS 0.985 0.1343 Paired ¢ t =7.483 (7.31el2)

Table 3: Normality (Shapiro-Wilk) and paired significance tests for our four 2D metrics.

Table 4: Per-instance Mean and Standard Deviation Across 145 Objaverse-XL Objects

Method PSNR1 SSIM?T LPIPS| FSt
IM (base)  10.88 4 2.95 0.7148 £ 0.0915 0.4094 £ 0.1131 0.8587 £ 0.0452
IM (ours) 12.53+3.43 0.7431+0.0946 0.3239+0.1224 0.8774 + 0.0470
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